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Preface

W
elcome to the third edition of Computer Graphics Through OpenGL:
From Theory to Experiments! The first edition appeared late 2010 and
the second four years after in 2014. Now, it’s been another four years in

which I received a lot of thoughtful and, happily, mostly positive feedback. I heard
from instructors, students, as well as individuals using the book for self-study. Their
observations together with my own classroom experience started me off a year ago
writing a new edition. It’s been a fairly intense past several months, most of my
waking hours spent sitting where I am now in front of the computer. But it’s been
fun too – being in communion with an imaginary reader who I am trying to enlighten
and keep engaged at the same time – and I am pleased with the result. I hope you
will be too. Let’s get to the facts.

About the Book

This is an introductory textbook on computer graphics with equal emphasis on theory
and practice. The programming language used is C++, with OpenGL as the graphics
API, which means calls are made to the OpenGL library from C++ programs. OpenGL
is taught from scratch.

The book has been written to be used as a textbook for a first college course, as
well as for self-study.

After Chapters 1-16 – the undergraduate core of the book – the reader will have a
good grasp of the concepts underpinning 3D computer graphics, as well as an ability
to code sophisticated 3D scenes and animation, including games and movies. We
begin with classical pre-shader OpenGL before proceeding to the latest OpenGL 4.x
(more about our exposition style further on). Chapters 17-21, though advanced, but
still mainstream, could be selected topics for an undergraduate course or part of a
second course.

Specs

This book comprises 21 chapters, an extended appendix on a fundamental math topic,
plus two more appendices containing a math self-test and its solutions. It comes with
approximately 180 programs, 270 experiments based on these programs, 750 exercises,
including theory and programming exercises, 110 worked examples, and 700 four-color
illustrations, include drawings and screenshots. An instructor’s manual containing
solutions to selected exercises is available from the publisher. The book was typeset
using LATEX and figures drawn in Adobe Illustrator.

From the Second Edition to the Third

• Cover to cover revision and reorganization of topics.

New topics include: xvii
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Preface • Timer queries and performance measurement.

• Importing externally created objects.

• Texturing spheres.

• Framebuffer objects.

• Rendering to texture.

• Texture matrices.

• Cube mapping a skybox.

• Shadow mapping curved surfaces.

• OpenGL 4.x:

◦ Procedural textures.

◦ Specular maps.

◦ Normal maps.

◦ Multiple program objects.

◦ Particle systems with transform feedback.

• 10 new programs, 20 new experiments, 100 new exercises, 10 new examples, 50
new figures.

• Programming environment simplified, programs developed on Windows 10 and
Microsoft Visual Studio (MSVS) 2015 and tested on MSVS 2017.

Target Audience

• Students in a first university CG course, typically offered by a CS department
at a junior/senior level. This is the primary audience for which the book was
written.

• Students in a second or advanced CG course, who may use the book as
preparation or reference, depending on the goals. For example, the book would
be a useful reference for a study of 3D design – particularly, Bézier, B-spline
and NURBS theory – and of projective transformations and their applications
in CG.

• Students in a non-traditional setting, e.g., studying alone or in a professional
course or an on-line program. The author has tried to be especially considerate
of the reader on her own.

• Professional programmers, to use the book as a reference.

Prerequisites

Zero knowledge of computer graphics is presumed. However, the student is expected
to know the following:

• Basic C++ programming. There is no need to be an expert programmer. The
C++ program serves mainly as an environment for the OpenGL calls, so there’s
rarely need for fancy footwork in the C++ part itself.

• Basic math. This includes coordinate geometry, trigonometry and linear algebra,
all at college first-course level (or, even strong high school in some cases). For
intended readers of the book who may be unsure of their math preparation, we
have a self-test in Appendix B, with solutions in Appendix C. The test should
tell exactly how ready you are and where the weaknesses are.xviii
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PrefaceResources

The following are available through the book’s website www.sumantaguha.com:

• Sample chapters, table of contents, preface, subject and program index, math
self-test and solutions at the Home page.

• Program source code, developed on a Windows 10 platform using the Microsoft
Visual Studio Community 2015 IDE and subsequently tested to run with MSVS
Community 2017, which should run on other versions of Windows/MSVS, as
well as Mac OS and Linux platforms. The programs are arranged chapter-wise
in the top-level folder ExperimenterSource at the Downloads page.

• Guide to installing OpenGL and running the programs on a Windows/MSVS
platform at the Downloads page.

• Multiplatform Experimenter software to run the experiments at the Downloads
page. Experimenter’s interface is Experimenter.pdf, a file containing all the
experiments from the book; except for those in Chapter 1, each is clickable
to bring up the related program and workspace. Experimenter is only an aid
and not mandatory – each program is stand-alone. However, it is the most
convenient way to run experiments in their book order.

• Book figures in jpg format arranged in sequence as one PowerPoint presentation
per chapter at the Instructor page.

• Instructor’s manual with solutions to 100 problems – instructors who have
adopted the textbook can submit a request at the Instructor page.

Pedagogical Approach

Code and theory have been intertwined as far as possible in what may be called a
theory-experiment-repeat loop: often, following a theoretical discussion, the reader is
asked to perform validating experiments (run code, that is); sometimes, too, the other
way around, an experiment is followed by an explanation of what is observed. It’s
kind of like discovering physics.

Why use an API?

Needless to say, I am not a fan of the API-agnostic approach to teaching CG, where
focus is on principles only, with no programming practice.

Undergrads, typically, love to code and make things happen, so there is little
justification to denying the new student the joy of creating scenes, movies and games,
not to mention the pride of achievement. And, why not leverage the way code and
theory reinforce one another when teaching the subject, or learning on one’s own,
when one can? Would you want Physics 101 without a lab section?

Moreover, OpenGL is very well-designed and the learning curve short enough to
fully integrate into a first CG course. And, it is supported on every OS platform with
drivers for almost every graphics card on the market; so, in fact, OpenGL is there to
use for anyone who cares to.
Note to student : Our pedagogical style means that for most parts of the book you
want a computer handy to run experiments. So, if you are going to snuggle up with it
at night, make it a threesome with a notebook.
Note to instructor : Lectures on most topics – both of the theory and programming
practice – are best based around the book’s experiments, as well as those you develop
yourself. The Experimenter resource makes this convenient. Slides other than the
plentiful book figures, the latter all available on-line, are rarely necessary.

How to teach modern shader-based OpenGL?

Our point of view needs careful explanation as it is different from some of our peers’.
Firstly, to push the physics analogy one more time, even though relativistic mechanics
seems to rule the universe, in the classroom one might prefer doing classical physics
before relativity theory. xix
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Preface Shaders, which are the programmable parts of the modern OpenGL pipeline, add
great flexibility and power. But, so too, do they add a fair bit of complexity – even
a cursory comparison of our very first program square.cpp from Chapter 2 with
its equivalent in fourth-generation OpenGL, squareShaderized.cpp, complemented
with a vertex and a fragment shader in Chapter 15, should convince the reader of this.

Consider more carefully, say, a vertex shader. It must compute the position
coordinates of a vertex, taking into account all transformations, both modelview and
projection. However, in the classical fixed-function pipeline the user can simply issue
commands such as glTranslatef(), glFrustum(), etc., leaving to OpenGL actual
computation of the transformed coordinates; not so for the programmable pipeline,
where the reader must write herself all the needed matrix operations in the vertex
shader. We firmly believe that the new student is best served learning first how to
transform objects according to an understanding of simply how a scene comes together
physically (e.g., a ball falls to the ground, a robot arm bends at the elbow, etc.) with
the help of ready-to-use commands like glTranslatef(), and, only later, how to
define these transforms mathematically.

Such consideration applies as well to other automatic services of the fixed-function
pipeline which allow the student to focus on phenomena, disregarding initially
implementation. For example, as an instructor, I would much prefer to teach first how
diffuse light lends three-dimensionality, specular light highlights, and so on, gently
motivating Phong’s lighting equation, leaving OpenGL to grapple with its actual
implementation, which is exactly what we do in Chapter 11.

In fact, we find an understanding of the fixed-function pipeline makes the subsequent
learning of the programmable one significantly easier because it’s then clear exactly
what the shaders should try to accomplish. For example, following the fixed-function
groundwork in Chapter 11, writing shaders to implement Phong lighting, as we do in
Chapter 15, is near trivial.

We take a similarly laissez-faire attitude to classical OpenGL syntax. So long as it
eases the learning curve we’ll put up with it. Take for example the following snippet
from our very first program square.cpp:

glBegin(GL_POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Does it not scream square – even though it’s immediate mode and uses the discarded
polygon primitive? So, we prefer this for our first lesson, avoiding thereby the
distraction of a vertex array and the call glDrawArrays(GL TRIANGLE STRIP, 0, 4),
as in the equivalent 4.x program squareShaderized.cpp, our goal being a simple
introduction of the synthetic-camera model.

With these thoughts in mind the book starts in Chapter 2 with classical pre-shader
OpenGL, progressing gradually deeper into the API, developing CG ideas in parallel,
in a so-called theory-experiment-repeat loop. So, what exactly is an experiment?
An experiment consists either of running a book program – each usually simple for
the purpose of elucidating a single idea – or attempting to modify one based on an
understanding of the theory in order, typically, to achieve a particular visual result.

By the end of Chapter 14 the student will have acquired proficiency in pre-shader
OpenGL, a perfectly good API in itself. As well, equally importantly, she will have
an understanding of CG principles and those underlying the OpenGL pipeline, which
will dramatically ease her way through the concepts and syntax of OpenGL 4.x, the
newest generation of the API, covered in Chapters 15-16.

Does this kind of introduction to modern OpenGL, via the old and, possibly,
obsolete, not ingrain bad habits? Not at all, from our experience. When push comes
to shove, how hard is it to replace polygons with triangle strips? Or, use vertex bufferxx
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Prefaceobjects (VBOs) and vertex array objects (VAOs) to store data? Does our approach
cost timewise? If the goal is OpenGL 4.x, then, yes, it does take somewhat longer,
but there are various possible learning sequences through the book and 4.x certainly
can be reached and covered in a semester.

In short, then, we believe the correct way to modern OpenGL is through the
classical version of the API because this allows the learning process to begin at
a high level, so that the student can concentrate on gaining an overall end-to-end
understanding of the CG pipeline first, leaving the OpenGL system to manage low-level
processes (i.e., those inside the pipeline like setting transformation and projection
matrices, defining fragment colors, and such). Once she has a high-level mastery,
subsequently “descending” into the pipeline to take charge of fixed-function parts in
order to program them instead will, in fact, be far less arduous than if she tried to do
both – learn the basics and program the pipeline – at the same time.

Another point to note in this context is that, as noted before, classical OpenGL is
a complete API in itself which, in fact, can be more convenient for certain applications
(e.g., it allows one access to the readymade GLUT objects like spheres and toruses).
There are, as well, thousands of currently live applications written in classical OpenGL,
which are not going go to be discarded or rewritten any time soon – the reason, in fact,
for the Khronos Group to retain the compatibility version of the API – so familiarity
with older syntax can be useful for the intending professional.

What about Vulkan?

We thought you might ask. Vulkan is the much-hyped “successor” to OpenGL. It is a
highly explicit API, taking the programmer close to the hardware and asking her to
specify almost all facets of the pipeline from end to end. Benefits of programming
near the hardware include thin drivers, reduced run-time overhead and the ability to
expose parallelism in the GPU. (Vulkan is not only a 3D graphics API, but used to
program GPU-heavy compute applications as well.)

Figure 1: Screenshot of
squareVulkanized.cpp, a
1000+ line Vulkan
program.

However, Vulkan’s explicitness and consequent verbosity make it highly unsuitable
as an introductory CG API. Here are some program sizes to begin with. The first
OpenGL program in the book, square.cpp, which draws a black square on a white
background, is about 90 lines of code in pre-shader 2nd generation OpenGL; a
functionally equivalent program, squareShaderized.cpp, written in OpenGL 4.3
later on in the book is 190 lines plus 25 lines of shader code; a minimal equivalent
Vulkan program, squareVulkanized.cpp, written separately by the author is 1,100
lines (no, that’s no misprint – the reader will find the program at the Downloads page
of the book’s website) plus 30 lines of shader code. Figure 1 is a screenshot.

Moreover, explicitness requires a Vulkan programmer to be familiar with the
functioning of the graphics pipeline at a low level in order to specify it, which almost
instantly disqualifies it from being a beginner’s API. Further, delaying programming
until after the pipeline has been covered goes utterly against our own pedagogical
approach which is to engage students with code the first day.

So, is OpenGL, or for that matter, this book, of any use for someone intending to
learn Vulkan? Well:

(a) The Vulkan graphics pipeline is essentially the same as OpenGL’s. Therefore,
learning OpenGL is progress toward Vulkan. Moreover, once a programmer has
mastered OpenGL, she has most of what’s needed to “take full charge” of the
pipeline, which is what Vulkan is all about.

(b) The runtime gains of Vulkan don’t begin to show up in any significant way
until one gets to complex scenes with lots of textures, objects and animation.
Less complicated applications - including, obviously, those in any introductory
CG book - benefit little performance-wise from being written (or, rewritten) in
Vulkan, not justifying the huge overhead in code.

This means that many OpenGL apps are going to stay that way and new ones
continue to be written. It’s a matter of knowing which tool to use: pre-shader xxi
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Preface OpenGL, OpenGL 4.x, Vulkan, . . .. (Hooking up a U-Haul trailer to the back of
a Ferrari is never a good idea.)

Nevertheless, if you are of the Vulkan or bust frame of mind then the advice we would
have is to study this book up to Chapter 16, when you will have a solid understanding
of fourth-generation OpenGL, then pick up, say, the canonical Vulkan guide [131],
through which you should then be able to make quick progress.

Capsule Chapter Descriptions

Part I: Hello World

Chapter 1: An Invitation to Computer Graphics

A non-technical introduction to the field of computer graphics.

Chapter 2: On to OpenGL and 3D Computer Graphics

Begins the technical part of the book. It introduces OpenGL and fundamental
principles of 3D CG.

Part II: Tricks of the Trade

Chapter 3: An OpenGL Toolbox

Describes a collection of OpenGL programming devices, including vertex arrays, vertex
buffer and array objects, mouse and key interaction, pop-up menus, and several more.

Part III: Movers and Shapers

Chapter 4: Transformation, Animation and Viewing

Introduces the theory and programming of animation and the virtual camera. Explains
user interactivity via object selection. Foundational chapter for game and movie
programming.

Chapter 5: Inside Animation: The Theory of Transformations

Presents the mathematical theory behind animation, particularly linear and affine
transformations in 3D.

Chapter 6: Advanced Animation Techniques

Describes frustum culling, occlusion culling as well as orienting animation using both
Euler angles and quaternions, techniques essential to programming games and busy
scenes.

Part IV: Geometry for the Home Office

Chapter 7: Convexity and Interpolation

Explains the theory of convexity and the role it plays in interpolation, which is the
procedure of spreading material properties from the vertices of a primitive to its
interior.

Chapter 8: Triangulation

Describes how and why complex objects should be split into triangles for efficient
rendering.

Chapter 9: Orientation

Describes how the orientation of a primitive is used to determine the side of it that
the camera sees, and the importance of consistently orienting a collection of primitives
making up a single object.

Part V: Making Things Up

Chapter 10: Modeling in 3D Spacexxii
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PrefaceSystematizes the principles of modeling both curves and surfaces, including Bézier and
fractal. Shows how to import objects from external design environments. Foundational
chapter for object design.

Part VI: Lights, Camera, Equation

Chapter 11: Color and Light
Explains the theory of light and material color, the interaction between the two, and
describes how to program light and color in 3D scenes. Foundational chapter for scene
design.

Chapter 12: Textures
Explains the theory of texturing and how to apply textures to objects and render to a
texture.

Chapter 13: Special Visual Techniques
Describes a set of special techniques to enhance the visual quality of a scene,
including, among others, blending, billboarding, stencil buffer methods, image and
pixel manipulation, cube mapping a skybox, and shadow mapping.

Part VII: Pixels, Pixels, Everywhere

Chapter 14: Raster Algorithms
Describes low-level rendering algorithms to determine the set of pixels on the screen
corresponding to a line or a polygon.

Part VIII: Programming Pipe Dreams

Chapter 15: OpenGL 4.3, Shaders and the Programmable Pipeline: Liftoff
Introduces 4th generation OpenGL and GLSL (OpenGL Shading Language) and how
to vertex and fragments shaders to program the pipeline, particularly to animate,
light and apply textures.

Chapter 16: OpenGL 4.3, Shaders and the Programmable Pipeline: Escape Velocity
Continuing onto advanced 4th generation OpenGL topics, including, among others,
instanced rendering, shader subroutines, transform feedback, particle systems, as well
as tessellation and geometry shaders.

Part IX: Anatomy of Curves and Surfaces

Chapter 17: Bézier
Describes the theory and programming of Bézier primitives, including curves and
surfaces.

Chapter 18: B-Spline
Describes the theory and programming of (polynomial) B-spline primitives, including
curves and surfaces.

Chapter 19: Hermite
Introduces the basics of Hermite curves and surfaces.

Part X: Well Projected

Chapter 20: Applications of Projective Spaces: Projection Transformations and
Rational Curves
Applies the theory of projective spaces to deduce the projection transformation in
the graphics pipeline. Introduces rational Bézier and B-spline, particularly NURBS,
theory and practice.

Part XI: Time for a Pipe

Chapter 21: Pipeline Operation xxiii



i
i

“cgBook” — 2018/8/22 — 0:58 — page xxiv — #24 i
i

i
i

i
i

Preface Gives a detailed view of the synthetic-camera and ray-tracing pipelines and introduces
radiosity.

Appendix A: Projective Spaces and Transformations
A CG-oriented introduction to the mathematics of projective spaces and transforma-
tions. Provides a complete theoretical background for Chapter 20 on applications of
projective spaces.

Appendix B: Math Self-Test
A self-test to assess math readiness for intending readers.

Appendix C: Math Self-Test Solutions
Solutions for the math self-test.
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Figure 2: Chapter dependence chart: dashed arrows represent weak dependencies.
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PrefaceSuggested Course Outlines

See the chapter dependencies in Figure 2.

(1) Undergraduate one-semester first CG course:

This course should be based on Chapters 1-16, though full coverage might be
ambitious for one semester. Instructors may pick topics to emphasize or skip,
depending on their goals for the course and the chapter dependence chart.

For example, for more practice and less theory, a possible sequence would be 1→
2 → 3 → 4 → 6 (only frustum culling) → 7 → 8 → 9 → 10 (skip curve/surface
theory) → 11 → 12 → 13 → 15 → 16.

Even this abbreviated sequence may be hard to pack into one semester. Please
keep in mind that when choosing what to write about the author preferred to
err on the side of excess rather than less. So, almost always will the instructor
find more material in a chapter than she cares to teach – we leave her to pick
her way out.

The most effective teaching method with this book is to base discussion around
experiments – both from the book and those the instructor develops herself.
Our Experimenter software makes this especially convenient. Students should be
involved in the experiments, running code simultaneously on their own machines
in class. Use of slides should be minimized except, possibly, for the plentiful
book figures, which are available to download, arranged as one PowerPoint
presentation per chapter.

(2) Advanced CG courses:

This book could serve as a reference for a study of 3D design – particularly,
Bézier (Chapter 17), B-spline (Chapter 18) and rational Bézier and NURBS
theory (Chapter 20) – and of projective transformations and their applications
(Appendix A and Chapter 20). From a practical point of view, Chapters 15-16
go fairly deep into the fourth generation of OpenGL and the GLSL, useful for
students who may be familiar with only the classical pipeline.

(3) Self-study:

A recommended first pass would be 1 → 2 → 3 → 4 → 7 → 8 → 9 (go light on
7-9 if your math is rusty) → 10 (skip theory) → 11 → 12 → 13 → 15 → 16.

Following this the student should take up a fair-sized programming project,
returning to the book as needed. For the theoretically-inclined there’s a lot to
keep her busy in Chapters 5 and 17-21.
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